
International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1012
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

An Optimal Checkpoint Automation
Mechanism for Fault Tolerance in

Computational Grid

Ch. Ramesh Babu

Abstract-- The vast dynamic virtual computing systems are more often vulnerable to failure due to heterogeneous and autonomic nature, so that
grid application may loss several hours/days of computation. Checkpointing is the widely used approach to provide fault tolerance in computational
grid environment. In this work we have developed a novel approach for optimal checkpoint automation by forecasting failure patterns in
computational resources using Hidden Makov Model (HMM) so as to select optimal failure resources to reduce checkpoints in grid TORQUE
resource manager. The failure patterns can be predicted by using HMM to assign checkpoint interval for each grid resource and to provide
automatic replica (context file) when a failure occurs. The experimental results has shown that the proposed methodology considerably reduces the
checkpoint overhead, storage space and turn-around time when compared to adaptive checkpointing approaches.

Index Terms-- Automatic checkpointing, Computational grid, Data logs, Fault-tolerance, optimal checkpointing, Replication.

——————————  ——————————

1. INTRODUCTION
Computational grid is an independent multiple-owner
heterogeneous architecture to accomplish huge
computationally intensive tasks. The computational grids
are the current trend advanced technology to execute the
large scale application in assorted heterogeneous
resources. Advanced computing technologies are changing
to virtual resources sharing, resource-pooling in dynamic
environment. Most frequently computational grid faces
problems with delay and job failures due to
heterogeneity and autonomic nature of grid’s resources.
Many times computational grids are prone to failure due
to lack of proper resource scheduling and fault tolerance
mechanism. So the failure rate of the nodes is relative to
the number of processors. The computational grid
workload-logs study says that system failure occurred 2 to
5 times per day on a large computing system which has
about on average of 5000 processors [1]. Even though the
number of failures or failure rate of each processor is
somewhat low, it might affect the node’s reliability. As a
result it is need to make a fault tolerant system. Most of the
computational problems, the complexity is habitually
exacted using the number of failure nodes with respect to
the number of calculations necessary to solve them and to
find the complexity. So the large computational problems

take much time to solve it.
In many algorithms computational problems which have
more calculation and computational capability such as
climatologic forecast, analysis of weather forecasting,
scientific simulations, seismic analysis and the genome
sequencing like many computational applications needs to
investigate more number of parameters which requires
large scale parallel processing systems. High performance
computing (HPC) can be used effectively to solve and
address these types of issues. In HPC the jobs are allocated
to complex heterogeneous group of dissimilar nodes, in
order that jobs might be executed concurrently in
independent nodes or processors [2, 3].
Typically these sophisticated computational resources
require fault tolerance mechanism. According to the large
scale, dynamic virtual computational resources such as
NASA iPSC, LANL CM5 work-load-logs traces shows that
job delay or job failure is the major challenging task to
provide fault tolerance [11, 12, 13 and 14]. Since very
robust fault tolerant checkpointing and scheduling
algorithms are used to handle various resource allocations
in computational grids. However there are some
performance issues needs to enhance the parameters such
as number of checkpoints overhead, checkpoint storage
space and low throughput. Consequently the major issue
in fault-tolerance is to effectively tolerate failures using job
checkpointing and fault-tolerant job scheduling to make
efficient failure handling mechanism in presence of faults.
Currently using techniques for fault tolerance in the
widely held computational applications are adaptive
checkpointing and replication. Since most of the job

————————————————
• Ch Ramesh Babu is currently working an Associate Professor in the Dept

of CSE in Malla Reddy Engineering College(Autonomous),Hyderabad, ,TS.
He completed his B.Tech(CSE) and M.Tech(CS) from JNT U, Hyderabad.
He submitted his PhD(CSE) thesis in JNTUK, Kakinada ,AP, India., and
is waiting for viva voce.. E-mail:chramesh522@gmail.com.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1013
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

checkpointing techniques are not merely based on
scheduling algorithm [5, 17].
 Since very robust scheduling algorithms are used to
handle various resource allocation in computational grids.
However, it is necessary in earlier studies to remedy the
failures and delay of executing jobs with respect to
resource availability, which can handle scheduling and
failures in any large scale high performance computational
applications. The major issue is fault-tolerance with regard
to job scheduling and failure handling mechanism.
Currently using techniques for fault tolerance in the
widely held computational applications are adaptive
checkpointing [15] or without checkpoint automation and
replication [5, 7].
The main objective of computational grids is to execute
large computational tasks more effectively to improve
throughput and to save processing time. Therefore the
user submits jobs to the Grid Scheduler (GS) along with
their Quality of Service (QoS) requirements. These
requirements may include the deadline in which users
want jobs to be executed, the type of the resources
required to execute the job and the type of the platform
needed. The GS of the present scheduling systems
allocates each job to the most suitable resource. In case of
fault free resource, the results of executing the job are
returned to the user after completion of the job. If a grid
resource fails during the execution of a job, then that job is
rescheduled on another resource which starts executing
the job from scratch. This leads to more time consumption
for the job than expected time so that the user’s QoS
requirements may not satisfy [4]. In this paper we have
presented heuristics that resolves number of checkpoint
overhead issue so as to provide high job throughput in
presence of failure.
The major drawback in grid middleware is lack of
synchronization among the nodes and the grid
middleware. Whenever a node fails it has to recover from
last saved checkpoint to overcome job delay in execution.
But many times there is an overhead due to many
checkpoints in without checkpoint automation
approaches. In order to tackle this we have proposed an
optimal checkpoint automation strategy which effectively
changes the dynamic behavior of the grid middleware
working mechanism according to the grid resource failure
information.

2.RELATED WORK

Most of the time in computational grid more number of
checkpoints causes checkpoint overhead, so as to reduce
the overheads, different approaches have been developed.
One of the conventional techniques of checkpointing is
incremental checkpointing which stores only modified
data during checkpointing. At the initial checkpointing
operation all pages of the program address space is saved.
After each checkpointing operation all the modified pages
will be updated in checkpoint server [8]. Here the
checkpoint library needs to be system initiated rather than
application-initiated in-order to truly adaptive. Real
measurements on an actual file system are still required to
validate. Moreover a large file system bandwidth might be
the hashing overhead.
In min-max checkpoint placement algorithm which
determines the uncertain circumstances in case of the
system failure. Here checkpoint interval is considered
without the complete knowledge on system failure
distribution. Even if optimal checkpoint interval is found
before, the checkpoint may not be possible to change over
time [9, 18]. When system failure time distribution is
known then the optimal checkpoint interval may change
and less number of checkpoints may be possible.
According to the adaptive task checkpointing and
replication scheme, propose two principles, Last Failure
Dependent Checkpointing (LastFailureCP) and Mean
Failure Dependent Checkpointing (MeanFailureCP). In
LastFailureCP algorithm it omits unnecessary checkpoint
placement with reference to the total execution time and
failure frequency of the resource. This algorithm keeps a
time stamp LFr that gives the time when the last failure
had occurred. Initially checkpointing request will be given
at time interval I and then request will be executed by Grid
Scheduler by comparing whether tc-LFr<=Er j, where tc is
the current time and Er j is the execution time of job j on
resource r, and LFr is the last failure time of resource r. If
the condition is true then checkpointing is allowed
otherwise checkpointing is omitted. In case of
MeanFailureCP, the checkpointing interval changes
according to the remaining execution time and mean
failure interval. Initially the algorithm gives checkpoint
request within fixed and preferably short time period ti [5,
20]. In the above last failure and mean failure algorithms
there may not be any scheduling algorithm exists for
scheduling jobs to grid nodes. In this Adaptive
checkpointing approach, scheduling methods needs to be
considered that adapt to dynamically changing and
estimations of job execution time to make efficient optimal
checkpointing.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1014
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

In Fault Tolerant Scheduling System Based on
Checkpointing method proposes an average failure time
and failure rate of resources combined with response time
when taking scheduling decisions. The checkpoint interval
is calculated using resource failure rate. This shows the
effectiveness of in view of resource failure rate and
resource failure time over considering the resource fault
index [4]. In this methodology if failure history of the
resource is unknown then the performance may be
decreased.
In Implementing and Evaluating Automatic
Checkpointing, an automatic checkpointing was proposed
for distributed computing environment extending the
LAM/MPI using a basic infrastructure provided by BLCR
[6, 19]. Here this method uses the local disks to record the
process contexts, which will be better investigated to
reduce the traffic in the interconnection network and the
overhead in the file server, thus increasing the
checkpointing performance [10, 11].
In recent studies on automatic checkpoint based fault
tolerance in computational grid proposes the need for
checkpoint automation in computational grid and
mechanism to combine grid job scheduling and optimal
checkpointing process [16, 17 and 19].

3.CHECKPOINT AUTOMATION MODEL FOR
COMPUTATIONAL GRID

The aim of this work is to optimize the performance of the
grid in the presence of faults and to improve throughput
value. When a fault occur a grid resource may not
complete its job within the given QoS. The main strategy of
the proposed OCA mechanism is to minimize the effect of
grid faults and to reduce the fault recovery time using
optimal automation of checkpointing so as to minimize the
amount of checkpoint overheads. To evaluate the above
prototype we have considered faults history so that each
resource scheduled based on the next sequence of pattern
failures. The failure patterns can be predicted by using
HMM to assign checkpoint interval and also to provide
automatic failure replica (context file of checkpoint) to the
grid resource.

3.1. Optimal Checkpoint Automation architecture (OCA)

The interaction among different components of the OCA is
shown in the following Figure.1. The OCA optimizes the
checkpoints to improve the efficiency over the execution of
the failed job from the last saved checkpoint. Thus it

reduces the response time of the job by reducing the time
wasted in additional checkpoints storage.
A grid contains multiple grid resources that provide
computing services to users. The main component of the
OCA is the pbs_scheduler. It receives the jobs with their
information from users. Job information includes job
number, job type, and job size. Also the user submits QoS
requirements for grid application, such as the deadline to
complete its execution, the number of required resources
and the type of these resources.
The main function of pbs_scheduler is to find and sort the
most suitable resources that can execute the job and satisfy
user QoS requirements. In order to perform this function,
the pbs_scheduler connects to the pbs_server to get
information of all available grid resources to execute the
job. The pbs_scheduler uses response time, resource failure
rate and resource failure time to construct the list of
suitable resources that can execute the job.
In Figure.1 OCA architecture contains the components
such as pbs_scheduler, pbs_server, Ckpt_server, and
autonomous computational resources as portable batch
system message oriented middleware (pbs_mom). Each
component accomplishes set of tasks, explained in 3.2 and
3.3.

Figure 1: Checkpoint automation in TORQUE resource
manager.

3.2. Considerations for optimal checkpoint automation
in TORQUE Resource Manager.
• To solve grid application, the grid user submits

the jobs along with QoS which requires large
computational power for computation.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1015
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

• Ckpt_server gets the list of failure resources and
checkpoint file information using computational
resource work-load-logs.

• The pbs_scheduler gets the failure patterns,
checkpoint intervals and available resources from
Ckpt_server, optimal checkpoint automation
library and pbs_server respectively.

• The pbs_server gets the all the information about
the resources like response time, failure rate and
sorts the list of resources according to resource
response time and make new list of available
resources with QoS requirements to find
checkpoint interval.

• The pbs_scheduler finds the optimal checkpoints
for each resource and sends the list to pbs_server
to allocate the jobs to resources.

• The pbs_server allocates the jobs to the selected
resources.

• Based on the checkpoint interval the Ckpt_server
takes the snapshots (context file) from computing
nodes. If any failure occurs in a node then latest
context job file can be retransmitted automatically.

• If more number of failures occurs in the same grid
site then the computational resource can be
rescheduled to another site.

• Optimal checkpoint automation library
reschedules the jobs to new grid resource through
pbs_server.

• Pbs_server collects aggregated results and ships it
to grid user.

3.3 Components of OCM in TORQUE

3.3.1. Grid Application:
This component takes grid application from the user
which typically requires large scale heterogeneous
resources, processing nodes with QoS of an application.

3.3.2. Pbs_ Server:
Pbs_server contains information of all available resources
in the grid required by the pbs_scheduler. The information
includes resource speed, current load, resource failure rate
and total failure time of each resource. For each job j
dispatched by the ckpt_server, if ckpt_server receives a job
completion message then it sends a message to the
pbs_server to increment S (Success) or if ckpt_server
receives a response as failure message then send it a
message to pbs_server to increment F (Failure), if there is a
checkpoint stored then ckpt_server dispatches the not
completed part of the job along the checkpoint status to the

second resource in the resources list, else ckpt_server
dispatches the whole job along to the second resource in
the resource list (see Figure 2).
The Pbs_server receives and stores partially executed
results of a job from children of pbs_mom. These
intermediate results are called checkpoint status. For each
job there is only one record of checkpoint status. When
ckpt_server receives a new checkpoint status it overwrites
the old one. If ckpt_server receives a job completion
message from the resource it removes the record of such
job.

Figure 2: Interactive Job Communication Flow.

3.3.3. Checkpointing Server:
Ckpt_server is an important component of OCA. The main
functions of ckpt_server are determining the number of
checkpoints for each pbs_mom and the checkpoint interval
for each job. ckpt_server receives a job with its assigned
list of resources from pbs_scheduler. It connects to
ckpt_server to get information about the failure history of
grid resources assigned to the job. Based on failure rate of
the resource, the ckpt_server determines the number of
checkpoints and the checkpoint intervals for each job.
Then, it submits the job to the first grid resource in the
resources list. The ckpt_server calculates the number of
checkpoints and the checkpoint interval for each resource
using work-load log files which are collected from
server_logs and mom_logs (see Figure 3).

3.3.4. Computational Resource:
This component consists of various heterogeneous virtual
computational resources which are managed
autonomously at different grid sites.

3.3.5. Pbs_scheduler:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1016
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

The Pbs_scheduler is the major component in grid
architecture. The pbs_scheduler initiates the application
with n-number of jobs to allocate grid resource. Now for
resources from pbs_server The pbs_scheduler sorts the
ach set of job the pbs_scheduler gets the list of available

Figure 3: Checkpointing at the Pbs_checkpointing

server.
suitable list of resources according to resource response
time -RRT, failure rate –FR and average failure time -AFT.
Afterwards pbs_scheduler dispatches the list to checkpoint
header. The pbs_scheduler schedules the resources using
optimal checkpointing approach-OCA with respect to job
list acquired from ckpt_server.

3.4 Finding Optimal checkpoint interval

The goal optimizing checkpoint intervals is to minimize
the number of checkpoints for each resource. This work
presents the design and implementation of the automatic
checkpoint mechanism using OpenMPI toolkit, including
high level complex applications context file recording,
failure detection and application recovery, using BLCR
framework in TORQUE.
3.5.1. The objective function:

MIN TT(X) = ΣNi=0(Tij l + Tij l * Fil)
 ….(1)

Where Tlij= tjs+ tje+ tjr
 ….(2)

 Fi = tjc+ tjr
 ….(3)

Subject To:
 (i). Tij l<RTi ij
 (ii). 0 < Fi < 1

Where, TT(X) is the estimated minimum turnaround time
for j resources to carry out application X of i jobs to
checkpoint in optimal manner. Tij l is the estimated
minimum turnaround time for j resources to carry out job
i, Fil is the failure resource, tjs scheduling time for ith job
on resource j, tije execution time for ith job on resource j, tjr

restart time for ith job on resource j.

Find the failure probability density function of resource

using exponential distribution as

…. (4)

 Each resource x checkpoint interval I can be generated as

using Bayes formula

CIi = P(xi | k, j) = P(k, j | xi) * P(xi) ….(5)

Differentiate interval I(x) with respect to mean and last

failure of resources.

 …. (6)

 …. (7)

Optimal checkpoint interval can be calculated as
CIi_new = (l1+l2)/2 …. (8)

Where, CIi_new is the new optimal checkpoint interval. The
above equations 4-8 are used to simulate grid failure
resource with optimal number of checkpoints by using the
parameters LastFailure (k) and MeanFailure (j). Here
CIi_new is the optimal checkpoint interval which reduces the
number of checkpoints, thus the checkpoint overheads are
reduced.

3.5.2. Checkpoint automation
In our mechanism, fabrication of snapshot points are
generated automatically (checkpoints) in a frequency
predicted by the job scheduling strategies, based on
OpenMPI collective function calls. The implementation of
the automatic checkpoint operations is based on threads
created in runtime, which execute the new functionalities
inserted into OpenMPI using TORQUE. We have
implemented different threads for different applications.
The following are the scheduling strategy and thread
workflow mechanism. The cycle of steps among the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1017
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

components of planned tactic of checkpoint plotting and
replication are explained in equations 9 to 14.

3.5 Failure forecasting of resources using HMM.

The Hidden Markov Model (HMM) is a state machine.
Here the failure states of the model are represented as
nodes and the failure transition are represented as edges.
The HMM have become the well-known and widely used
statistical approach to characterizing the spectral
properties failure prediction approaches. HMM is a
stochastic modeling tool having an advantage of providing
the high reliable and natural way of failure analysis for
resources. HMM integrates into the systems involving
information related to last and mean failure approaches,
currently it is predominant approach for the optimal
checkpointing in computational grid.

HMM provides a method which directly estimates
the conditional probability of index of failures in resource
given a hypothesized identity for index of failures in
resource. HMMs consists of two processes namely Hidden
and the Observed process. The Hidden process consists of
a collection of failure states connected by the resources.
And each of these transactions is described by two sets of
probabilities:

 Steps involved in making HMM’s work:

• Estimating conditional probabilities to last and mean
failure sequence to given a model OCA
methodology.

• Finds the best checkpoint interval which is closely
matches the input sequence. This enables to assign
optimal checkpoint interval from last failures
pattern.

• Prepare a model to using the mean and last failure
parameters of checkpoints and its corresponding
transition probabilities to best account for a
checkpoint library.

The failure patterns of the resources can find using the
formula
wj= P(xi | rj) = P(rj | xi)* P(xi) / P(rj). ...(9)

The grid Resource are sorted by using
(rj , wj) rj = rj * wj
 ...(10)

Finding the checkpoint interval

CI= ∑ i,j=1n,m (TT(X))/Njf; ….(11)

Finding number of checkpoints
CN = Tij/CIi; ….(12)

According to number of checkpoints the resources can be
rescheduled using
CTr i % CIi == 0 &&REir>CIi ….(13)

Finding the turnaround time of the application Xni=1.
TTj = Tr i *(1+CNr i) ….(14)

Throughput of the application is
 n = N /∑TTtpj ….(15)

Where, Xni=1 Computational jobs (x1,x2,….xn), CI- jth
resource failure weight, n- Throughput of an application X,
CNj -Number of Checkpoints for resource j, TT(X)- Total
turnaround time of application X.

Computational grid User can submit jobs through the
grid user interface. The application interface receives user
jobs and transforms to scheduler. Typically the job
information consists of job number, job type, and job size
also receives Quality of Service requirements of each job
such as the deadline to complete its execution, the number
of required resources and the type of these resources. The
scheduler assigns each job to the most reliable, suitable,
and available resource to execute the job. The most reliable
resource is the resource that has a lower fault rate.

4.PERFORMANCE EVALUATION

In this experiment, applications with 100 to 2000 jobs with
10-200 faults are modelled. The size of each job is
randomly selected from 1 KB up to 10 MB. The number of
resources in the grid can reach up to 10. Different
simulation experiments have been conducted with
variation in the total number of jobs submitted to the grid
and measuring the throughput, turnaround time and the
tendency of resources to fail. The proposed OCA approach
is compared with the Adaptive algorithms the details of
that experiment can be found in Table-1. Based on the
experiments the following graphs Figure 2 and Figure 3
are plotted.

4.1 Optimal Checkpoint Automation setup

Most of the existing grid simulators like GridSim, SimGrid
do not support fault-tolerant scheduling and
checkpointing. To assess the optimal checkpoint

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1018
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

automation operation, we have arranged heterogeneous
nodes called NUMA Non-uniform memory architecture
environment in TORQUE resource manager which
composed of 50 nodes, running Open SUSE Linux 12.2.
Each node has 1 GB RAM, 1 GB swap and a Gigabit
network card. We have taken the first five nodes to operate
Open SUSE Linux with TORQUE resource manager and
the remaining nodes to execute Windows-XP to access and
operate the jobs through Putty software. The TORQUE
resource manager assigns the jobs to the idle resources. We
have used the Networking File System (NFS) to store
checkpoints into the checkpoint server so that if any one
node fails then chronologically the last saved checkpoint
can be accessed automatically. At present our claim
methodology ropes optimal checkpoint automation for
large scale grid application. We have installed TORQUE
resource manager service on all nodes and applied auto
checkpoint generation based on optimal checkpoint
interval. Since it improves the performance of the grid
application in presence of a failure when compare to
Adaptive checkpointing approaches.

Table-1: Comparison of adaptive checkpointing with OCA
Optimal Checkpointing. In the table the notations CH –
checkpoints, M-memory, T-time.

The Table-1 shows the comparison between adaptive
checkpointing and optimal checkpoint automation for job
processing times.

Figure 2: Processing time comparison by varying
number of jobs

Figure 3: Space comparison by varying number of
jobs

The Figure 2, Figure. 3 depict processing time and space
comparison of checkpoint algorithms respectively. The
proposed system depends on average failure time and last
failure rate to make optimal checkpointing decisions using
HMM model. The checkpoint interval is calculated merely
using resource failure rate prior information. The
performance of Optimal Checkpoint Automation
algorithm is compared with Checkpointing based Fault-
Tolerant Grid System (or adaptive checkpointing
Algorithm-CFTG), in which these algorithms depends on
the response time and the fault index of resources to make
checkpoint interval. But the OCA method uses resource
fault index to make checkpoint using Hidden Markov
Model states (HMM) to make checkpoint scheduling for
calculating effective prediction based checkpoint interval.

Experimental results show that OCA approach
effectively schedules jobs in the presence of failures. It
improves the turnaround time and throughput when
compared with the adaptive checkpointing algorithms.
Moreover the failure tendency for the proposed OCA
methodology is far better than the adaptive checkpointing
algorithm. Thus, it can be concluded that the proposed
scheduling system provides better performance when
compared to adaptive Algorithm. In this approach the

Nod
es

Job

 Adaptive
Algorithms

Optimal checkpoint
automation
Algorithm

CH M T CH M T
50 100 10 .7 0.8 3 0.3 .3
50 500 50 .9 3 15 0.5 .8

50
100

 100 1 4 32 0.7 1.3

50
150

150 2 6 50 1.0 1.8

50
200

200 2 7 65 1.3 2.6

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 1019
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

failure history of resources must be known in prior to
make the optimal checkpointing approach using fault
tolerant scheduling approach. If the computational
resources are new then checkpointing interval might be
unpredictable.

5.CONCLUSIONS

In this work we have proposed an optimal checkpoint
automation mechanism for computational grids. Here the
optimal checkpoints are calculated using the predicted
failure patterns of resources using HMM. The unique
optimal checkpoint interval is generated for each resource,
which yields reduction in number of checkpoints. Hence
this methodology considerably reduces the checkpoint
overheads by reducing number of checkpoints. The
developed model, optimal checkpoint automation (OCA
method) is implemented in TORQUE resource manager
frame-work, which shows better turnaround time, storage
space and throughput of an application compare to
adaptive algorithms. Experimental results show that OCA
methodology effectively tolerates the resource failures.
Therefore we conclude that the developed checkpointing
system provides better performance when compare to
adaptive checkpointing algorithms.

REFERENCES

[1]. Schroeder, B. Gibson, G.A, “A Large-Scale Study of

Failures in High-Performance Computing Systems”,
Dependable and Secure Computing, IEEE
Transactions on (Volume:7 , Issue: 4), 2010.

[2]. G. Kandaswamy, A. Mandal, and D. A. Reed, “Fault
tolerance and recovery of scientific workflows on
computational grids”, in 8th IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGRID’08), 2008, pp. 777–782.

[3]. Sangho Yi, Derrick Kondo, Bongjae Kim, Geunyoung
Park, “Using Replication and Checkpointing for
Reliable Task Management in Computational Grids”,
IEEE Transactions -2010.

[4]. Mohammed Amoon, “A Fault Tolerant Scheduling
System Based on Checkpointing for Computational
Grids”, IJAST, Vol. 48, November, 2012.

[5]. Maria Chtepen, Filip H.A. Claeys, Bart Dhoedt,
“Adaptive Task Checkpointing and Replication:
Toward Efficient Fault-Tolerant Grids“, ieee-
transations on parallel and distributed systems,
vol.20, no.2, February 2009.

[6]. Antonio S. Martins Jr., Ronaldo A. L. Gonçalves,
“Implementing and Evaluating Automatic
Checkpointing”, IEEE Transactions -2007.

[7]. Chang, R.-S., National Dong Hwa University,
Hualien, Chang, H.-P., Wang, and Y. T., “A dynamic
weighted data replication strategy in data grids”, In:
Computer Systems and Applications, AICCSA 2008,
IEEE/ACS 2008.

[8]. Saurabh Agarwal, Rahul Garg, Joes Moreira,
“Adaptive Incremental checkpointing for Massively
Parallel Systems”, ACM, 2004.

[9]. T. Ozaki, T. Dohi, H. Okamura and N. Kaio, “Min-
Max Checkpoint Placement under Incomplete Failure
Information”, Proc. Int’l Conf. Dependable Systems
and Networks (DSN ’04),June-July 2004.

[10]. Http://www.open-mpi.org/
[11]. Http://crd.lbl.gov/groups-depts/ftg/projects/current-

projects/BLCR
[12]. Dilli babu, S., Ramesh Babu, Ch., Subba Rao, Ch.D.V.,

“An efficient fault-tolerance technique using check-
pointing and replication in grids using data logs.”,
In: publications of problems and application in
engineering research—ijpaper.com, vol 04. Special
issue 01, 2013.

[13]. Http://gwa.ewi.tudelft.nl/
[14]. Http://www.cs.huji.ac.il/labs/parallel/workload/l_lcg/

index.html
[15]. Http://www.adaptivecomputing.com/
[16]. Ch. Ramesh Babu, Ch. D. V. Subba Rao, “Automatic

checkpoint based fault tolerance in computational
grid”, IEEE Conference COMMANTEL-2014.

[17]. G. Molto, V. Hernández, J.M. Alonso, “Automatic
replication of WSRF-based Grid services via
operation providers” J. of FGCS-2009.

[18]. Greg Bronevetsky, Daniel Marques, Keshav Pingali,
Paul Stodghill, "C3: A System for Automating
Application-level Checkpointing of MPI Programs",
Department of Computer Science, Cornell University.

[19]. Gengbin Zheng, Chao Huang and Laxmikant V.
Kal´e, "Performance Evaluation of Automatic
Checkpointbased Fault Tolerance for AMPI and
Charm++", Department of Computer Science,
University of Illinois at UrbanaChampaign.

[20]. Najme Mansouri, "An Effective Weighted Data
Replication Strategy for Data Grid", Australian
Journal of Basic and Applied Sciences- 2012.

IJSER

http://www.ijser.org/
http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/BLCR
http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/BLCR
http://gwa.ewi.tudelft.nl/
http://www.cs.huji.ac.il/labs/parallel/workload/l_lcg/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_lcg/index.html

	3.4 Finding Optimal checkpoint interval

